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Abstract

In Eukarya, stalled translation induces 40S dissociation and recruitment of the Ribosome Quality 

control Complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here, we 

report cryoEM structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p 

(YMR247C/Rkr1) bind to the 60S at sites exposed after 40S dissociation, placing the Ltn1p RING 

domain near the exit channel and Rqc2p over the P-site tRNA. We further demonstrate that Rqc2p 
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recruits alanine and threonine charged tRNA to the A-site and directs elongation of nascent chains 

independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein 

synthesis in which a protein—not an mRNA—determines tRNA recruitment and the tagging of 

nascent chains with Carboxy-terminal Ala and Thr extensions (“CAT tails”).

Despite the processivity of protein synthesis, faulty messages or defective ribosomes can 

result in translational stalling and incomplete nascent chains. In Eukarya, this leads to 

recruitment of the RQC which mediates ubiquitylation and degradation of incompletely-

synthesized nascent chains (1–4). The molecular components of the RQC include the AAA 

ATPase Cdc48p and its ubiquitin-binding cofactors, the RING-domain E3 ligase Ltn1p, and 

two proteins of unknown function, Rqc1p and Rqc2p. We set out to determine the 

mechanism(s) by which relatively rare (5) proteins like Ltn1p, Rqc1p, and Rqc2p recognize 

and rescue stalled 60S ribosome-nascent chain complexes, which are vastly outnumbered by 

ribosomes translating normally or in stages of assembly.

To reduce structural heterogeneity and enrich for complexes still occupied by stalled nascent 

chains, we immunoprecipitated Rqc1p-bound RQC assemblies from S. cerevisiae strains 

lacking the C-terminal RING domain of Ltn1p, which prevents substrate ubiquitylation and 

Cdc48 recruitment (1). 3D classification of Ltn1ΔRING particles revealed 60S ribosomes 

with nascent chains in the exit tunnel and extra-ribosomal densities (Fig 1). These extra-

ribosomal features were resolved between 5Å and 14Å and proved to be either Tif6p or 

RQC components as characterized below (Figs 1, S1–7). Tif6p was not observed bound to 

the same 60S particles bound by RQC factors (Figs S1–3). We repeated the purification, 

imaging and 3D classification from rqc2Δ cells and computed difference maps. This 

analysis did not reveal density attributable to Rqc1p, but did identify Rqc2p as a tRNA-

binding protein that occupies the 40S binding surface and Ltn1p as the elongated molecule 

that meets Rqc2p at the sarcin-ricin loop (SRL) (Figs 1–2, S1–S5). Comparison of the 60S-

bound Ltn1p with reconstructions of isolated Ltn1p suggests that the N-terminus of Ltn1p 

engages the SRL with Rqc2p and that the middle region–which contains long HEAT/

Armadillo repeats that adopt an elongated superhelical structure–reaches around the 60S (6). 

This conformation likely positions the C-terminal RING domain near the exit tunnel to 

ubiquitylate stalled nascent chains (Fig S5–6 and (7)).

A refined reconstruction of the Rqc2p-occupied class demonstrated that Rqc2p makes 

extensive contacts with an approximately P-site positioned (~P-site) tRNA (Figs 1–2, S7). 

Rqc2p has a long coiled-coil that makes direct contact with the SRL and the 60S P-stalk 

base (Fig 2A). This structure also revealed Rqc2p binding to an ~A-site tRNA whose 3′-

CCA tail is within the peptidyl transferase center of the 60S (Fig 2B, S7). This observation 

was unexpected since A-site tRNA interactions with the large ribosomal subunit are 

typically unstable and require mRNA templates and elongation factors (8). Rqc2p’s 

interactions with the ~A-site tRNA appeared to involve recognition between the anticodon 

loop and a globular N-terminal domain, as well as D-loop and T-loop interactions along 

Rqc2p’s coiled coil (Figs 2–3).

To determine whether Rqc2p binds specific tRNA molecules, we extracted total RNA 

following RQC purification from strains with intact RQC2 versus rqc2Δ strains. Deep 
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sequencing by a new method (9) using a thermostable group II intron reverse transcriptase 

revealed that the presence of Rqc2p leads to a ~10-fold enrichment of tRNAAla(AGC) and 

tRNAThr(AGT) in the RQC (Fig 3A). In complexes isolated from strains with intact RQC2, 

Ala(AGC) and Thr(AGT) are the most abundant tRNA molecules, even though they are less 

abundant than a number of other tRNAs in yeast (10).

Our structure suggested that Rqc2p’s specificity for these tRNAs is due in part to direct 

interactions between Rqc2p and positions 32-36 of the anticodon loop, some of which are 

edited in the mature tRNA (Fig 3). Adenosine 34 in the anticodon of both tRNAAla(AGC) and 

tRNAThr(AGT) is deaminated to inosine (11–13), leading to a diagnostic guanosine upon 

reverse transcription (13, 14) (Fig 3B–C). Further analysis of the sequencing data revealed 

that cytosine 32 in tRNAThr(AGT) is also deaminated to uracil in ~70% of the Rqc2p-

enriched reads (Fig 3 and (15)). Together with the structure, this suggests that Rqc2p binds 

to the D-, T- and anticodon loop of the ~A-site tRNA, and that recognition of the 32-

UUIGY-36 edited motif accounts for Rqc2’s specificity for these two tRNAs (Fig 3C–D). 

The pyrimidine at position 36 could explain the discrimination between the otherwise 

similar anticodon loops that harbor purines at base 36.

While assessing why Rqc2p evolved to bind these specific tRNA molecules, we considered 

these observations: first, our structural and biochemical data indicate that Rqc2p binds the 

60S subunit after a stalled ribosome dissociates (Fig S6, 1, 2). Second, stalled nascent chains 

accumulate as higher molecular weight species in the presence of Rqc2p than in its absence 

(Fig 4A, also seen in Fig 3E of (1)). Finally, amino acid addition to a nascent chain can be 

mediated by the large ribosomal subunit in vitro even when decoupled from a messenger 

RNA template and the small subunit (16). Together, these facts led us to hypothesize that 

Rqc2p may promote the extension of stalled nascent chains with alanine and threonine 

residues in an elongation reaction that is mRNA- and 40S-free. This hypothesis makes 

specific predictions. First, the Rqc2p-dependent increase in the molecular weight of the 

nascent chain should occur from the C-terminus exclusively. Second, the C-terminal 

extension should consist entirely of alanine and threonine residues that start immediately at 

the stalling sequence. Finally, the alanine and threonine extension should not have a defined 

sequence.

To test these predictions we expressed a series of reporters containing a stalling sequence 

(tracts of up to 12 consecutive arginine codons, including pairs of the difficult-to-decode 

CGA codon (17)), inserted between the coding regions of GFP and RFP (Fig 4A). Null 

mutations in RQC components or inhibition of the proteasome led to the accumulation of 

nascent chain fragments that are normally degraded in WT cells (Fig 4A) (1–4, 18). 

Furthermore, ltn1Δ and rqc2Δ cells have different phenotypes: expression of the stalling 

reporter in ltn1Δ led to formation and accumulation of higher molecular weight species that 

resolve as a smear ~1.5–5 kDa above the expected position of GFP (Fig 4A). GFP mass-

shifted products are observable in rqc1Δltn1Δ double mutants, less prominent but still 

observable in rqc1Δ single mutants, but absent in all rqc2Δ single and double mutants (Fig 

4A). Thus, Rqc2p is necessary for the production of these higher molecular weight GFP 

species.
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We probed the location of the extra mass along the GFP by inserting a Tobacco Etch Virus 

(TEV) protease cleavage site upstream of the stalling tract (Fig 4B). GFP resolved as a 

single band of the expected size with TEV treatment, indicating that the extra mass is 

located at or after the stall sequence. To pinpoint the location of the extra mass along the 

GFP, we moved the TEV cleavage site after the R12 stalling sequence. This created a mass-

shifted GFP that was insensitive to TEV treatment, suggesting that the post-R12 TEV 

cleavage site was not synthesized. One possible model is that a translational frame shift 

occurs near the R12 sequence which causes the mRNA to be mistranslated until the next 

out-of-frame stop codon. We falsified this model in two ways. First, we detected an Rqc2p-

dependent GFP mass shift using a shorter R4 reporter in which multiple STOP codons were 

engineered in the +1 and +2 frames following the poly-arginine tract (Fig S8). Second, we 

detected the Rqc2p-dependent GFP mass shift in a construct encoding a hammerhead 

ribozyme. The ribozyme cleaves the coding sequence of the GFP mRNA, leaving a 

truncated non-stop mRNA that causes a stall during translation of its final codon (Fig S8, 

(19)). Thus the GFP mass shift is located at or after the stall sequence but cannot be 

explained by mRNA translation past the stalling tract in any frame.

In order to determine the composition of the GFP mass-shifted products, we performed total 

amino acid analysis of immunopurified GFP from strains expressing the stalling reporter. 

Purified GFP from ltn1 (Fig 4C) or rqc1 strains (Fig S9) is enriched in alanine and threonine 

compared to purified GFP from double mutants with rqc2 which do not produce extended-

GFP. We then used Edman degradation to sequence TEV release fragments following 

purification of the stalled GFP reporter from the ltn1 strain. The first three codons in the R12 

sequence are CGG-CGA-CGA, and Edman degradation suggested that the ribosome stalls at 

the first pair of the challenging-to-decode CGA codons (Fig S10). Following the encoded 

arginine residues, rising levels of alanine and threonine were detected at the C-terminus (Fig 

S10). We further characterized these fragments by mass spectrometry and detected diverse 

poly-Ala and poly-Thr species ranging from 5 to 19 residues with no defined sequence 

(Table S1). Together, these observations demonstrate that Rqc2p directs the elongation of 

stalled nascent chains with non-templated Carboxy-terminal Ala and Thr extensions or 

“CAT tails”.

Earlier work (1) revealed that accumulation of stalled nascent chains (e.g., by deletion of 

LTN1) led to a robust heat shock response that is fully dependent on Rqc2p, although the 

mechanism by which Rqc2p enabled this stress response was unclear. Here, we 

hypothesized that CAT tails may be required for activation of Heat Shock Factor 1 (Hsf1p). 

To isolate the effect of CAT tails in this context, we sought an rqc2 allele that could not 

support CAT tails synthesis but could still bind to the 60S and facilitate Ltn1p-dependent 

ubiquitylation of the nascent chains. Rqc2p belongs to the conserved NFACT family of 

nucleic acid-binding proteins (20) and the N-terminal NFACT-N domain of Rqc2p is 22% 

identical to the NFACT-N domain of the S. aureus protein Fbp (PDB:3DOA). Based on 

sequence and predicted secondary structure conservation, we fit this structure into a portion 

of the cryoEM density ascribed to Rqc2p (Figs S11–12). This modeling exercise predicts 

that Rqc2p’s NFACT-N domain recognizes features of both the P- and A-site tRNA 

molecules and that conserved residues, D9, D98 and R99—which have been hypothesized to 
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play roles in nucleic-acid binding or modifying reactions (20)—may contact the ~A-site 

tRNA (20) (Fig S12). An Rqc2p variant in which these residues were mutated to alanine 

(rqc2aaa) rescued 60S recognition and the clearance of the stalling reporter almost as 

effectively as wild type Rqc2p, but did not support CAT tail synthesis (Figs 4D, S12). This 

CAT tail-deficient rqc2aaa allele also failed to rescue Hsf1p transcriptional activation (Fig 

4E), indicating that CAT tails may promote Hsf1p activation.

Integrating our observations, we propose the model schematized in Fig S13. Ribosome 

stalling leads to dissociation of the 60S and 40S subunits, followed by recognition of the 

peptidyl-tRNA-60S species by Rqc2p and Ltn1p. Ltn1p ubiquitylates the stalled nascent 

chain, and this leads to Cdc48 recruitment for extraction and degradation of the incomplete 

translation product. Rqc2p, through specific binding to Ala(IGC) and Thr(IGU) tRNAs, 

directs the template-free and 40S-free elongation of the incomplete translation product with 

CAT tails. CAT tails induce a heat shock response through a mechanism that is yet to be 

determined.

Hypomorphic mutations in the mammalian homolog of LTN1 cause neurodegeneration in 

mice (21). Similarly, mice with mutations in a CNS-specific isoform of tRNAArg and 

GTPBP2, a homolog of yeast Hbs1 which works with PELOTA/Dom34 to dissociate stalled 

80S ribosomes, suffer from neurodegeneration (22). These observations speak to the 

consequences that ribosome stalls impose on the cellular economy. Eubacteria rescue stalled 

ribosomes with the tmRNA-SmpB system, which appends nascent chains with a unique C-

terminal tag that targets the incomplete protein product for proteolysis (23). The 

mechanisms utilized by eukaryotes, which lack tmRNA, to recognize and rescue stalled 

ribosomes and their incomplete translation products have been unclear. The RQC—and 

Rqc2p’s CAT tail tagging mechanism in particular—bear both similarities and contrasts to 

the tmRNA trans-translation system. The evolutionary convergence upon distinct 

mechanisms for extending incomplete nascent chains at C-terminus argues for their 

importance in maintaining proteostasis. One advantage of tagging stalled chains is that it 

may distinguish them from normal translation products and facilitate their removal from the 

protein pool. An alternate, not mutually exclusive, possibility is that the extension serves to 

test the functional integrity of large ribosomal subunits so that the cell can detect and 

dispose of defective large subunits that induce stalling.
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Figure 1. CryoEM reconstructions of peptidyl-tRNA-60S ribosomes bound by the RQC 
components Rqc2p and Ltn1p
A) A peptidyl-tRNA-60S complex isolated by immunoprecipitation of Rqc1p. The ribosome 

density is transparent to visualize the nascent chain. B) Rqc2p (purple) and an ~A-site tRNA 

(yellow) bound to peptidyl-tRNA-60S complexes. Landmarks indicated (L1, L1 stalk; SB, 

P-stalk base). C) Ltn1p (tan) bound to Rqc2p-peptidyl-tRNA-60S complexes (B).
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Figure 2. Rqc2p binding to the 60S ribosome, ~P-site and ~A-site tRNAs
A) Rqc2p contacts ~P- and ~A-site tRNAs, the sarcin-ricin loop (SRL) and P-stalk base 

rRNA (SB). B) Rigid body fitting of tRNAs structures (ribbons) into EM densities (mesh).

Shen et al. Page 9

Science. Author manuscript; available in PMC 2015 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Rqc2p-dependent enrichment of tRNAAla(IGC) and tRNAThr(IGU)

A) tRNA cDNA reads extracted from purified RQC particles and summed per unique 

anticodon, with versus without Rqc2p. B) Secondary structures of tRNAAla(IGC) and 

tRNAThr(IGU). Identical nucleotides underlined. Edited nucleotides indicated with asterisks 

(24, 25). C) Weblogo representation of cDNA sequencing reads related to shared sequences 

found in anticodon loops (positions 32-38) of mature tRNAAla(IGC) and tRNAThr(IGU)(26). 

D) ~A-tRNA contacts with Rqc2p at the D-, T-, and anticodon loops. Identical nucleotides 

between tRNAAla(IGC) and tRNAThr(IGU) colored as in panel B (A, green; U, red; C, blue; G, 

orange) and pyrimidine, purple. Anticodon nucleotides are indicated as slabs.
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Figure 4. Rqc2p-dependent formation of CAT tails
A–B, D) Immunoblots of stalling reporters in RQC deletion strains. C) Total amino acid 

analysis of immunoprecipitated GFP expressed in ltn1Δ and ltn1Δrqc2Δ strains, N=3. E) 
Triplicate GFP levels measured with a flow cytometer and normalized to a wild type control. 

EV=empty vector. All error bars are standard deviations.
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